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Abstract

Graph-based Semi-Supervised Learning (SSL) aims to trans-
fer the labels of a handful of labeled data to the remain-
ing massive unlabeled data via a graph. As one of the most
popular graph-based SSL approaches, the recently proposed
Graph Convolutional Networks (GCNs) have gained remark-
able progress by combining the sound expressiveness of neu-
ral networks with graph structure. Nevertheless, the existing
graph-based methods do not directly address the core prob-
lem of SSL, i.e., the shortage of supervision, and thus their
performances are still very limited. To accommodate this is-
sue, a novel GCN-based SSL algorithm is presented in this
paper to enrich the supervision signals by utilizing both data
similarities and graph structure. Firstly, by designing a semi-
supervised contrastive loss, improved node representations
can be generated via maximizing the agreement between dif-
ferent views of the same data or the data from the same class.
Therefore, the rich unlabeled data and the scarce yet valu-
able labeled data can jointly provide abundant supervision
information for learning discriminative node representations,
which helps improve the subsequent classification result. Sec-
ondly, the underlying determinative relationship between the
data features and input graph topology is extracted as supple-
mentary supervision signals for SSL via using a graph gener-
ative loss related to the input features. Intensive experimental
results on a variety of real-world datasets firmly verify the
effectiveness of our algorithm compared with other state-of-
the-art methods.

Introduction
Semi-Supervised Learning (SSL) focuses on utilizing small
amounts of labeled data as well as relatively large amounts
of unlabeled data for model training (Zhu 2005). Over the
past few decades, SSL has attracted increasing research in-
terests and various approaches have been developed (Zhu,
Ghahramani, and Lafferty 2003; Joachims 1999), which
usually employ cooperative training (Blum and Mitchell
1998), support vector machines (Bennett and Demiriz 1999;
Li and Zhou 2010), consistency regularizers (Tarvainen and
Valpola 2017; Laine and Aila 2016; Berthelot et al. 2019),
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and graph-based methods (Zhu, Ghahramani, and Lafferty
2003; Gong et al. 2015; Belkin, Niyogi, and Sindhwani
2006; Kipf and Welling 2017; Ma et al. 2019). Among them,
the graph-based SSL algorithms have gained much attention
due to its ease of implementation, solid mathematical foun-
dation, and satisfactory performance.

In a graph-based SSL algorithm, all labeled and unla-
beled data are represented by graph nodes and their re-
lationships are depicted by graph edges. Then the prob-
lem is to transfer the labels of a handful of labeled nodes
(i.e., labeled examples) to the remaining massive unla-
beled nodes (i.e., unlabeled examples) such that the un-
labeled examples can be accurately classified. A popular
method is to use graph Laplacian regularization to enforce
the similar examples in the feature space to obtain simi-
lar label assignments, such as (Belkin, Niyogi, and Sind-
hwani 2006; Gong et al. 2015; Bühler and Hein 2009). Re-
cently, research attention has been shifted to the learning of
proper network embedding to facilitate the label determina-
tion (Kipf and Welling 2017; Defferrard, Bresson, and Van-
dergheynst 2016; Zhou et al. 2019; Veličković et al. 2018;
Hu et al. 2019; Yan, Xiong, and Lin 2018), where Graph
Convolutional Networks (GCNs) have been demonstrated
to outperform traditional graph-based models due to its im-
pressive representation ability (Wu et al. 2020a). Concretely,
GCNs generalize Convolutional Neural Networks (CNNs)
(LeCun, Bengio et al. 1995) to graph-structured data based
on the spectral theory, and thus can reconcile the expressive
power of graphs in modeling the relationships among data
points for representation learning.

Although graph-based SSL methods have achieved no-
ticeable progress in recent years, they do not directly tackle
the core problem of SSL, namely the shortage of supervi-
sion. One should note that the number of labeled data in
SSL problems is usually very limited, which poses a great
difficulty for stable network training and thus will probably
degrade the performance of GCNs. To accommodate this is-
sue, in this paper, we aim at sufficiently extracting the super-
vision information carried by the available data themselves
for network training, and develop an effective transductive
SSL algorithm via using GCNs. That is to say, the goal is to
accurately classify the observed unlabeled graph nodes (Zhu



2005; Gong et al. 2016).
Our proposed method is designed to enrich the supervi-

sion signals from two aspects, namely data similarities and
graph structure. Firstly, considering that the similarities of
data points in the feature space provide the natural supervi-
sion signals, we propose to use the recently developed con-
trastive learning (He et al. 2020; Chen et al. 2020) to fully
explore such information. Contrastive learning is an active
field of self-supervised learning (Doersch, Gupta, and Efros
2015; Gidaris, Singh, and Komodakis 2018), which is able
to generate data representations by learning to encode the
similarities or dissimilarities among a set of unlabeled ex-
amples (Hjelm et al. 2018). The intuition behind is that the
rich unlabeled data themselves can be used as supervision
signals to help guide the model training. However, unlike the
typical unsupervised contrastive learning methods (Hassani
and Khasahmadi 2020; Velickovic et al. 2019), SSL prob-
lem also contains scarce yet valuable labeled data, so here
we design a new semi-supervised contrastive loss, which
additionally incorporates class information to improve the
contrastive representation learning for node classification
tasks. Specifically, we obtain the node representations gener-
ated from global and local views respectively, and then em-
ploy the semi-supervised contrastive loss to maximizing the
agreement between the representations learned from these
two views. Secondly, considering that the graph topology it-
self contains precious information which can be leveraged
as supplementary supervision signals for SSL, we utilize a
generative term to explicitly model the relationship between
graph and node representations. As a result, the originally
limited supervision information of labeled data can be fur-
ther expanded by exploring the knowledge from both data
similarities and graph structure, and thus leading to the im-
proved data representations and classification results. There-
fore, we term the proposed method as ‘Contrastive GCNs
with Graph Generation’ (CG3). In experiments, we demon-
strate the contributions of the supervision clues from utiliz-
ing contrastive learning and graph structure, and the supe-
riority of our proposed CG3 to other state-of-the-art graph-
based SSL methods has also been verified.

Related Work
In this section, we review some representative works on
graph-based SSL and contrastive learning, as they are re-
lated to this article.

Graph-based Semi-Supervised Learning
Graph-based SSL has been a popular research area in the
past two decades. Early graph-based methods are based on
the simple assumption that nearby nodes are likely to have
the same label. This purpose is usually achieved by the
low-dimensional embeddings with Laplacian eigen-maps
(Belkin and Niyogi 2004; Belkin, Niyogi, and Sindhwani
2006), spectral kernels (Zhang and Ando 2006), Markov
random walks (Szummer and Jaakkola 2002; Zhou et al.
2004; Gong et al. 2014), etc. Another line is based on graph
partition, where the cuts should agree with the class informa-
tion and are placed in low-density regions (Zhu and Ghahra-

mani 2002; Speriosu et al. 2011). In addition, to further im-
prove the learning performance, various techniques are pro-
posed to jointly model the data features and graph struc-
ture, such as deep semi-supervised embedding (Weston et al.
2012) and Planetoid (Yang, Cohen, and Salakhudinov 2016)
which regularize a supervised classifier with a Laplacian
regularizer or an embedding-based regularizer. Recently, a
set of graph-based SSL approaches have been proposed
to improve the performance of the above-mentioned tech-
niques, including (Calder et al. 2020; Gong, Yang, and Tao
2019; Calder and Slepčev 2019).

Subsequently, inspired by the success of CNNs on grid-
structured data, various types of graph convolutional neu-
ral networks have been proposed to extend CNNs to graph-
structured data and have demonstrated impressive results
in SSL (Dehmamy, Barabási, and Yu 2019; Zhang et al.
2019; Xu et al. 2019; Zhu et al. 2020a; Wang et al. 2020;
Wu et al. 2020b). Generally, graph convolution can be at-
tributed to the spatial methods directly working on node
features and the spectral methods based on convolutions
on nodes. In spatial methods, the convolution is defined
as a weighted average function over the neighbors of each
node which characterizes the impact exerting to the tar-
get node from its neighboring nodes, such as GraphSAGE
(Hamilton, Ying, and Leskovec 2017), graph attention net-
work (GAT) (Veličković et al. 2018), and the Gaussian in-
duced convolution model (Jiang et al. 2019b). Different
from the spatial methods, spectral graph convolution is usu-
ally based on eigen-decomposition, where the locality of
graph convolution is considered by spectral analysis (Jiang
et al. 2019a). Concretely, a general graph convolution frame-
work based on graph Laplacian is first proposed in (Bruna
et al. 2014). Afterwards, ChebyNet (Defferrard, Bresson,
and Vandergheynst 2016) optimized the method by using
Chebyshev polynomial approximation to realize eigenvalue
decomposition. Besides, (Kipf and Welling 2017) proposed
GCN via using a localized first-order approximation to
ChebyNet, which brings about more efficient filtering oper-
ations than spectral CNNs. Despite the noticeable achieve-
ments of these graph-based semi-supervised methods in re-
cent years, the main concern in SSL, i.e., the shortage of
supervision information, has not been directly addressed.

Contrastive Learning
Contrastive learning is a class of self-supervised approaches
which trains an encoder to be contrastive between the repre-
sentations that depict statistical dependencies of interest and
those that do not (Velickovic et al. 2019; Chen et al. 2020;
Tschannen et al. 2019). In computer vision, a large collec-
tion of works (Hadsell, Chopra, and LeCun 2006; He et al.
2020; Tian, Krishnan, and Isola 2019) learn self-supervised
representations of images via minimizing the distance be-
tween two views of the same image. Analogously, the con-
cept of contrastive learning has also become the central to
some popular word-embedding methods, such as word2vec
model (Mikolov et al. 2013) which utilizes co-occurring
words and negative sampling to learn the word embeddings.

Recently, contrastive methods can be found in several
graph representation learning algorithms (Peng et al. 2020).



For instance, Deep Graph Infomax (DGI) (Velickovic et al.
2019) extends deep Infomax (Hjelm et al. 2018) via learn-
ing node representations through contrasting node and graph
encodings. Besides, (Hassani and Khasahmadi 2020) learns
node-level and graph-level representations by contrasting
different structures of a graph. Apart from this, a novel
framework for unsupervised graph representation learning is
proposed in (Zhu et al. 2020b) by maximizing the agreement
of node representations between two graph views. Although
contrastive learning can use the data themselves to provide
the supervision information for representation learning, they
are not directly applicable to SSL as they fail to incorpo-
rate the labeled data which are scarce yet valuable in SSL.
In this paper, we devise a semi-supervised contrastive loss
function to exploit the supervision signals contained in both
the labeled and unlabeled data, which can help learn the dis-
criminative representations for accurate node classification.

Problem Description
We start by formally introducing the problem of graph-
based SSL. Suppose we have a set of n = l + u examples
Ψ = {x1, · · · ,xl,xl+1, · · · ,xn}, where the first l examples
constitute the labeled set with the labels {yi}li=1 and the re-
maining u examples form the unlabeled set with typically
l � u. We denote X ∈ Rn×d as the feature matrix with the
i-th row formed by the feature vector xi of the i-th example,
and Y ∈ Rn×c as the label matrix with its (i, j)-th element
Yij = 1 if xi belongs to the j-th class and Yij = 0 other-
wise. Here d is the feature dimension and c is the number of
classes. The dataset Φ is represented by a graph G = 〈V, E〉,
where V is the node set containing all examples and E is the
edge set modeling the similarity among the nodes/examples.
The adjacency matrix of G is denoted as A with Aij = 1 if
there exists an edge between xi and xj and Aij = 0 other-
wise. In this paper, we target transductive graph-based SSL
which aims to find the labels yl+1, yl+2, · · · , yn of the unla-
beled examples xl+1,xl+2, · · · ,xn based on Ψ.

Method
This section details our proposed CG3 model (see Figure 1).
Specifically, we illustrate the critical components of CG3

by explaining the multi-view establishment for graph con-
volutions, presenting the semi-supervised contrastive learn-
ing, elaborating the graph generative loss, and describing the
overall training procedure.

Multi-View Establishment for Graph Convolutions
In our CG3 method, we need to firstly build two differ-
ent views for the subsequent graph contrastive learning.
Note that in self-supervised visual representation learning
tasks, contrasting congruent and incongruent views of im-
ages helps the algorithms learn expressive representations
(Tian, Krishnan, and Isola 2019; He et al. 2020). However,
unlike the regular grid-like image data where different views
can be simply generated by standard augmentation tech-
niques such as cropping or color distortion, the view aug-
mentation on irregular graph data is not trivial, as graph
nodes and edges do not contain visually semantic contents as

in the image (Velickovic et al. 2019). Although edge remov-
ing or adding is a simple way to generate a related graph, it
might damage the original graph topology, and thus degrad-
ing the representation results of graph convolutions. Instead
of directly changing the graph structure, we employ two
types of graph convolutions to generate node representations
from two different views revealing the local and global cues.
In this means, the representations from different views com-
plement to each other and thus enriching the final representa-
tion results. Specifically, by performing contrastive learning
between the obtained representations from two views, the
rich global and local information can be encoded simultane-
ously. This process will be detailed as follows.

To obtain node representations from the local view, we
actually have many choices of network architectures, such
as the commonly-used GCN (Kipf and Welling 2017) and
GAT (Veličković et al. 2018) which produce node represen-
tations by aggregating neighborhood information. For sim-
plicity, we adopt the GCN model (Kipf and Welling 2017)
as our backbone in the local view. In this work, a two-layer
GCN is employed with the input feature matrix X and adja-
cency matrix A, namely

Hφ1 = Âσ(ÂXW(0))W(1), (1)

where Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A + I, D̃ii =
∑
j Ãij ,

W(0) and W(1) denote the trainable weight matrices, σ(·)
represents an activation function (e.g., the ReLU function
(Nair and Hinton 2010)), and Hφ1 denotes the representa-
tion result learned from view φ1 (i.e., the local view).

Afterwards, we employ a simple yet effective hierarchical
GCN model, i.e., HGCN (Hu et al. 2019), to generate the
representations from the global view. Concretely, HGCN re-
peatedly aggregates the structurally similar graph nodes to
a set of hyper-nodes, which can produce coarsened graphs
for convolution and enlarge the receptive field for the nodes.
Then, the symmetric graph refining layers are applied to re-
store the original graph structure for node-level representa-
tion learning. Such a hierarchical graph convolution model
comprehensively captures the nodes’ information from local
to global perspectives. As a result, the representations Hφ2

can be generated from the global view (i.e., view φ2), which
provides complementary information to Hφ1 .

Semi-Supervised Contrastive Learning
Unsupervised contrastive methods have led to great suc-
cess in various domains, as they can exploit rich informa-
tion contained in the data themselves to guide the repre-
sentation learning process. However, the unsupervised con-
trastive techniques (Hassani and Khasahmadi 2020; Zhu
et al. 2020b) fail to explore the class information which is
scarce yet valuable in SSL problems. To address this is-
sue, we propose a semi-supervised contrastive loss which
incorporates the class information to improve the contrastive
representation learning. The proposed semi-supervised con-
trastive loss can be partitioned into two parts, namely the
supervised and unsupervised contrastive losses.

Formally, the unsupervised contrastive learning is ex-
pected to achieve the effect as

score(f(xi), f(x+
i ))� score(f(xi), f(x−

i )), (2)
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Figure 1: The framework of our approach. In (a), the original graph is adopted as the input of (b) the localized GCNs and (c)
the hierarchical GCNs, respectively, where (c) is utilized to capture the global information and serves as the augmented view of
(b). In (d), the node representations are generated from (b) and (c), and then constitute the contrastive loss and graph generative
loss collaboratively, in order to provide additional supervision signals to improve the representation learning process. In (e), the
classification result is acquired via integrating the outputs of (b) and (c), where the cross-entropy loss is used to penalize the
difference between the model prediction and the given labels of the initially labeled nodes.

where x+
i is a node similar or congruent to xi, x−

i is a
node dissimilar to xi, f is an encoder, and the score func-
tion is used to measure the similarity of encoded features of
two nodes. Here, (xi, x+

i ) and (xi, x−
i ) indicate the positive

and negative pairs, respectively. Eq. (2) encourages the score
function to assign large values to the positive pairs and small
values to the negative pairs, which can be used as the super-
vision signals to guide the learning process of encoder f . By
resorting to the above-mentioned explanations, our unsuper-
vised contrastive loss Luc can be presented as

Luc =
1

2n

n∑
i=1

(Lφ1
uc(xi) + Lφ2

uc(xi)), (3)

where Lφ1
uc(xi) and Lφ2

uc(xi) denote the unsupervised pair-
wise contrastive losses of xi in local and global views, re-
spectively. Further, Lφ1

uc(xi) can be obtained with the simi-
larity measured by inner product, namely

Lφ1
uc(xi) = − log

exp(〈hφ1

i ,h
φ2

i 〉)∑n
j=1 exp(〈hφ1

i ,h
φ2

j 〉)
, (4)

where hφ1

i = Hφ1

i,: and hφ2

i = Hφ2

i,: denote the representa-
tion results of xi learned from the local and global views,
respectively, and 〈·〉 denotes the inner product. Here Hφv

i,:

denotes the i-th row of the matrix Hφv for v = 1, 2. By us-
ing Eq. (4), the similarity of the positive pairs (i.e., hφ1

i and
hφ2

i ) can be contrasted with that of the negative pairs, and
then Lφ2

uc(xi) can be similarly calculated by

Lφ2
uc(xi) = − log

exp(〈hφ2

i ,h
φ1

i 〉)∑n
j=1 exp(〈hφ2

i ,h
φ1

j 〉)
. (5)

To incorporate the scarce yet valuable class information for
model training, we propose to use a supervised contrastive
loss as follows:

Lsc =
1

2l

l∑
i=1

(Lφ1
sc (xi) + Lφ2

sc (xi)). (6)

Here, the supervised pairwise contrastive loss of xi can be
computed as

Lφ1
sc (xi) = − log

∑l
k=1 1[yi=yk] exp(〈hφ1

i ,h
φ2

k 〉)∑l
j=1 exp(〈hφ1

i ,h
φ2

j 〉)
, (7)

Lφ2
sc (xi) = − log

∑l
k=1 1[yi=yk] exp(〈hφ2

i ,h
φ1

k 〉)∑l
j=1 exp(〈hφ2

i ,h
φ1

j 〉)
, (8)

where 1[·] is an indicator function which equals to 1 if the
argument inside the bracket holds, and 0 otherwise. Unlike
unsupervised contrastive learning in Eqs. (4) and (5), here
the positive and negative pairs are constructed based on the
facts that whether two nodes belong to the same class. In
other words, a data pair is positive if both examples have the
same label, and is negative if their labels are different.

By combining the supervised and unsupervised con-
trastive losses, we arrive at the following semi-supervised
contrastive loss:

Lssc = Luc + Lsc. (9)

The mechanism of our semi-supervised contrastive learn-
ing has been exhibited in Figure 2. By minimizing Lssc,
the rich unlabeled data and the scarce yet valuable labeled
data work collaboratively to provide additional supervision
signals for discriminative representation learning, which can
further improve the subsequent classification result.

Graph Generative Loss
Apart from the supervision information extracted from data
similarities via contrastive learning, we also intend to distill
the graph topological information to better guide the rep-
resentation learning process. In this work, a graph genera-
tive loss is utilized to encode the graph structure and model
the underlying relationship between the feature representa-
tions and graph topology. Inspired by the generative models
(Hoff, Raftery, and Handcock 2002; Kipf and Welling 2016;
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Figure 2: The mechanism of our semi-supervised contrastive
learning between local view and global view. The red and
blue circles denote the labeled graph nodes, where each
color corresponds to a specific class, and the gray circles rep-
resent the unlabeled graph nodes. Various contrastive strate-
gies adopted by our method are illustrated by the arrows with
different colors and line styles.

Ma et al. 2019), we let the graph edge eij be the binary ran-
dom variable with eij = 1 indicating the existence of the
edge between xi and xj , and eij = 0 otherwise. Here the
edges are assumed to be conditionally independent, so that
the conditional probability of the input graph G given Hφ1

and Hφ2 can be factorized as

p(G|Hφ1 ,Hφ2) =
∏
i,j

p(eij |Hφ1 ,Hφ2). (10)

Similar to the latent space models (Hoff, Raftery, and Hand-
cock 2002; Ma et al. 2019), we reasonably assume that the
probability of eij only depends on the representations of
xi and xj . Meanwhile, to further maximize the node-level
agreement across the global and local views, the conditional
probability of eij can be obtained as p(eij |Hφ1 ,Hφ2) =

p(eij |hφ1

i ,h
φ2

j ). Finally, for practical use, we specify the
parametric forms of the conditional probability by using a
logit model, which arrives at

p(G|Hφ1 ,Hφ2) =
∏
i,j

p(eij |hφ1

i ,h
φ2

j ) =
∏
i,j

δ([hφ1

i ,h
φ2

j ]w),

(11)
where δ(·) is the logistic function, w is the learnable param-
eter vector, and [·, ·] is the concatenation operation. By max-
imizing Eq. (11), the observed graph structure can be taken
into consideration along with data feature and scarce label
information for node classification, and thus the graph gen-
erative loss can be formulated as Lg2 = −p(G|Hφ1 ,Hφ2).

Model Training
To obtain the overall network output O, we integrate the rep-
resentation results generated by the GCN and HGCN mod-
els, so that the rich information from both local and global
views can be exploited, which is expressed as

O = λφ1Hφ1 + (1− λφ1)Hφ2 , (12)

where 0 < λφ1 < 1 is the weight assigned to Hφ1 . After-
wards, the cross-entropy loss can be adopted to penalize the
differences between the network output O and the labels of
the originally labeled nodes as

Lce = −
l∑
i=1

c∑
j=1

Yij lnOij . (13)

Algorithm 1 The Proposed CG3 algorithm

Input: Feature matrix X; adjacency matrix A; label matrix
Y; maximum number of iterations T

1: for t = 1 to T do
2: // Multi-view representation learning
3: Perform localized graph convolution (i.e., Eq. (1))

and hierarchical graph convolution (Hu et al. 2019) to
obtain Hφ1 and Hφ2 , respectively;

4: // Calculate loss values
5: Calculate semi-supervised contrastive loss Lssc

based on Eqs. (3) and (6);
6: Calculate the graph generative loss Lg2 by Eq. (11);
7: Calculate the cross-entropy loss Lce with Eq. (13);
8: Update the network parameters according to the

overall loss function L in Eq. (14);
9: end for

10: Conduct label prediction based on the trained network;
Output: Predicted label for each unlabeled graph node.

Table 1: Dataset statistics

Datasets Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Amazon Computers 13,752 245,861 767 10
Amazon Photo 7,650 119,081 745 8
Coauthor CS 18,333 81,894 6,805 15

Finally, by combining Lce with the semi-supervised con-
trastive lossLssc and the graph generative lossLg2 , the over-
all loss function of our CG3 can be presented as

L = Lce + λsscLssc + λg2Lg2 , (14)

where λssc > 0 and λg2 > 0 are tuning parameters to weight
the importance of Lssc and Lg2 , respectively. The detailed
description of our CG3 is provided in Algorithm 1.

Experimental Results
To reveal the effectiveness of our proposed CG3 method,
extensive experiments have been conducted on six bench-
mark datasets including three widely-used citation networks
(i.e., Cora, CiteSeer, and PubMed) (Sen et al. 2008; Bo-
jchevski and Günnemann 2018), two Amazon product co-
purchase networks (i.e., Amazon Computers and Amazon
Photo) (Shchur et al. 2018), and one co-author network sub-
jected to computer science (i.e., Coauthor CS) (Shchur et al.
2018). Dataset statistics are summarized in Table 1. We re-
port the mean accuracy of ten independent runs for every
algorithm on each dataset to achieve fair comparison.

Node Classification Results
We evaluate the performance of our CG3 method on
transductive semi-supervised node classification tasks by
comparing it with a series of methods, including Label
Propagation (LP) (Zhu, Ghahramani, and Lafferty 2003),



Table 2: Classification accuracies of compared methods on Cora, CiteSeer, PubMed, Amazon Computers, Amazon Photo, and
Coauthor CS datasets. Some records are not associated with standard deviations as they are directly taken from (Hassani and
Khasahmadi 2020) which did not report standard deviations.

Method Cora CiteSeer PubMed Amazon
Computers

Amazon
Photo

Coauthor
CS

LP 68.0 45.3 63.0 70.8±0.0 67.8±0.0 74.3±0.0
Chebyshev 81.2 69.8 74.4 62.6±0.0 74.3±0.0 91.5±0.0
GCN 81.5 70.3 79.0 76.3±0.5 87.3±1.0 91.8±0.1
GAT 83.0±0.7 72.5±0.7 79.0±0.3 79.3±1.1 86.2±1.5 90.5±0.7
SGC 81.0±0.0 71.9±0.1 78.9±0.0 74.4±0.1 86.4±0.0 91.0±0.0
DGI 81.7±0.6 71.5±0.7 77.3±0.6 75.9±0.6 83.1±0.5 90.0±0.3
GMI 82.7±0.2 73.0±0.3 80.1±0.2 76.8±0.1 85.1±0.1 91.0±0.0
MVGRL 82.9±0.7 72.6±0.7 79.4±0.3 79.0±0.6 87.3±0.3 91.3±0.1
GRACE 80.0±0.4 71.7±0.6 79.5±1.1 71.8±0.4 81.8±1.0 90.1±0.8

CG3 83.4±0.7 73.6±0.8 80.2±0.8 79.9±0.6 89.4±0.5 92.3±0.2

Chebyshev (Defferrard, Bresson, and Vandergheynst 2016),
GCN (Kipf and Welling 2017), GAT (Veličković et al.
2018), SGC (Wu et al. 2019), DGI (Velickovic et al. 2019),
GMI (Peng et al. 2020), MVGRL (Hassani and Khasah-
madi 2020), and GRACE (Zhu et al. 2020b). For the
Cora, CiteSeer, and PubMed datasets, we use the same
train/validation/test splits as (Yang, Cohen, and Salakhudi-
nov 2016). For the other three datasets (i.e., Amazon Com-
puters, Amazon Photo, and Coauthor CS), we use 30 labeled
nodes per class as the training set, 30 nodes per class as the
validation set, and the rest as the test set. The selection of
labeled nodes on each dataset is kept identical for all com-
pared methods.

Classification results are reported in Table 2, where the
highest record on each dataset are highlighted in bold. No-
tably, the GCN-based contrastive models (i.e., DGI, GMI,
MVGRL, GRACE, and CG3) can achieve strong perfor-
mance across all six datasets, which is due to the reason that
contrastive learning aims to extract additional supervision
information from data similarities for improving the learned
representations, and thus obtaining promising classification
results. In our CG3, two different types of GCNs are adopted
to aggregate information from both local and global views.
Meanwhile, CG3 enriches the supervision signals from data
similarities and graph structure simultaneously, which can
help generate discriminative representations for classifica-
tion tasks. Consequently, the proposed CG3 consistently sur-
passes other contrastive methods and achieves the top level
performance among all baselines on these six datasets.

Results under Scarce Labeled Training Data
To further investigate the ability of our proposed CG3 in
dealing with scarce supervision, we conduct experiments
when the number of labeled examples is extremely small.
For each run, we follow (Li, Han, and Wu 2018) and se-
lect a small set of labeled examples for model training. The
specific label rates are 0.5%, 1%, 2%, 3% for Cora and Cite-
Seer datasets, and 0.03%, 0.05%, 0.1% for PubMed dataset.
Here, the baselines are kept identical with the previous node

Table 3: Classification accuracies with different label rates
on Cora dataset.

Label Rate 0.5% 1% 2% 3%

LP 56.4 62.3 65.4 67.5
Chebyshev 36.4 54.7 55.5 67.3
GCN 42.6 56.9 67.8 74.9
GAT 56.4 71.7 73.5 78.5
SGC 43.7 64.3 68.9 71.0
DGI 67.5 72.4 75.6 78.9
GMI 67.1 71.0 76.1 78.8
MVGRL 61.6 65.2 74.7 79.0
GRACE 60.4 70.2 73.0 75.8

CG3 69.3 74.1 76.6 79.9

classification experiments.

The results shown in Tables 3, 4, and 5 again verify the
effectiveness of our CG3 method. We see that CG3 outper-
forms other state-of-the-art approaches under different small
label rates across the three datasets. It can be observed that
the performance of GCN significantly declines when the la-
bel information is very limited (e.g., at the label rate of 0.5%
on Cora dataset) due to the inefficient propagation of label
information. In contrast, the GCN-based contrastive mod-
els (i.e., DGI, GMI, MVGRL, GRACE, and CG3) can of-
ten achieve much better results with few labeled data, which
demonstrates the benefits of extracting supervision informa-
tion from data themselves to learn powerful representations
for classification tasks. Besides, it is noteworthy that on each
dataset, our CG3 consistently outperforms the other GCN-
based contrastive approaches (i.e., DGI, GMI, MVGRL, and
GRACE) by a large margin, especially when the labeled data
becomes very limited. This is due to that our proposed CG3

can additionally exploit the supervision signals from graph
topological and label information simultaneously, which has
often been ignored by other contrastive models.



Table 4: Classification accuracies with different label rates
on CiteSeer dataset.

Label Rate 0.5% 1% 2% 3%

LP 34.8 40.2 43.6 45.3
Chebyshev 19.7 59.3 62.1 66.8
GCN 33.4 46.5 62.6 66.9
GAT 45.7 64.7 69.0 69.3
SGC 43.2 50.7 55.8 60.9
DGI 60.7 66.9 68.1 69.8
GMI 56.2 63.5 65.7 68.0
MVGRL 61.7 66.6 68.5 70.3
GRACE 55.4 59.3 63.4 67.8

CG3 62.7 70.6 70.9 71.3

Table 5: Classification accuracies with different label rates
on PubMed dataset.

Label Rate 0.03% 0.05% 0.1%

LP 61.4 65.4 66.4
Chebyshev 55.9 62.5 69.5
GCN 61.8 68.8 71.9
GAT 65.7 69.9 72.4
SGC 62.5 69.4 69.9
DGI 60.2 68.4 70.7
GMI 60.1 62.4 71.4
MVGRL 63.3 69.4 72.2
GRACE 64.4 67.5 72.3

CG3 68.3 70.1 73.2

Ablation Study
As is mentioned in the introduction, our proposed CG3 em-
ploys the contrastive and graph generative losses to enrich
the supervision signals from the data similarities and graph
structure, respectively. To shed light on the contributions of
these two components, we report the classification results of
CG3 when each of the two components is removed on the
three previously-used datasets including Cora, CiteSeer, and
PubMed. The data splits are kept identical with (Yang, Co-
hen, and Salakhudinov 2016). For simplicity, we adopt ‘CG3

(w/o ConLoss)’ and ‘CG3 (w/o GenLoss)’ to represent the
reduced models by removing the contrastive loss Lssc and
the graph generative loss Lg2 , respectively, and the compar-
ative results have been exhibited in Table 6. It is apparent
that the classification accuracy will decrease when any one
of the aforementioned components is dropped, which reveals
that both components make essential contributions to boost-
ing the performance. In particular, our proposed model is
able to improve the classification performance substantially
by utilizing the contrastive loss, e.g., the accuracy can be
raised by nearly 4% on CiteSeer dataset.

Meanwhile, it is noteworthy that our proposed model per-
forms graph convolution in different views based on two par-
allel networks (i.e., GCN and HGCN), and also conducts
contrastive operation between these two views. As a result,

Table 6: Ablation study of the contrastive and generative
losses on Cora, CiteSeer, and PubMed datasets.

Method Cora CiteSeer PubMed

CG3 (w/o ConLoss) 79.2±0.7 69.8±1.3 76.6±1.0
CG3 (w/o GenLoss) 82.9±0.9 72.9±0.9 79.8±0.9

CG3 83.4±0.7 73.6±0.8 80.2±0.8

(a) (b) (c)

Figure 3: t-SNE embeddings of the nodes under different
methods on Cora dataset. (a) GCN; (b) HGCN; (c) CG3.

the abundant local and global information are encoded si-
multaneously to obtain the improved data representations
for classification. To reveal this, we visualize the embed-
ding results of Cora dataset generated by GCN, HGCN, and
CG3 via using t-SNE method (Maaten and Hinton 2008),
which are given in Figure 3. As can be observed, the 2D
projections of the embeddings generated by our CG3 (see
Figure 3(c)) can exhibit more coherent clusters when com-
pared with the other two methods. Therefore, we believe that
the contrastiveness among multi-view graph convolutions is
beneficial to rendering promising classification results.

Conclusion
In this paper, we have presented the Contrastive GCNs with
Graph Generation (CG3) which is a new GCN-based ap-
proach for transductive semi-supervised node classification.
By designing a semi-supervised contrastive loss, the scarce
yet valuable class information, together with the data simi-
larities, can be used to provide abundant supervision infor-
mation for discriminative representation learning. Moreover,
the supervision signals can be further enriched by lever-
aging the underlying relationship between the input graph
topology and data features. Experiments on various public
datasets illustrate the effectiveness of our method in solving
different kinds of node classification tasks.
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P.; and Bengio, Y. 2018. Graph attention networks. In ICLR.

Velickovic, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio,
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